Microwave-Assisted Kumada-Type Cross-Coupling Reactions of Iodinated Carba-closo-dodecaborate Anions

Alexander Himmelspach,[†] Guido J. Reiss,[‡] and Maik Finze^{*,†}

†
Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzbu[rg,](#page-8-0) Am Hubland, 97074 Würzburg, Germany $^\ddag$ Institut für Anorganische Chemie und Strukturchemie II, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Dü sseldorf, Germany

S Supporting Information

[AB](#page-8-0)STRACT: [The microwa](#page-8-0)ve-assisted Pd-catalyzed Kumadatype cross-coupling reaction of iodinated carba-closo-dodecaborate anions requires smaller amounts of Grignard reagent and catalyst and results in higher yields in much shorter reaction times in comparison to a reaction with conventional heat transfer. 12-Ph₃P-closo-1- $CB_{11}H_{11}$ was identified as the side product of the cross-coupling reactions that use

[PdCl₂(PPh₃)₂]. The inner salt, which is the first example for a {closo-1-CB₁₁} cluster with a B–P bond, was selectively synthesized via a related microwave-assisted cross-coupling protocol and characterized by NMR spectroscopy, elemental analysis, and single-crystal X-ray diffraction. In addition, the crystal structures of the tetraethyl ammonium salts of [12-Ph-closo-1-CB₁₁H₁₁]⁻, [12-(4-MeOC₆H₄)-closo-1-CB₁₁H₁₁]⁻, and [12-(H₂C=(Me)CC≡C)-closo-1-CB₁₁H₁₁]⁻ are described.

■ INTRODUCTION

Carba-closo-dodecaborate anions are of growing interest because they are used in various applications, 1 for example, as weakly coordinating anions,²⁻⁶ in catalysis,⁷⁻¹⁰ in ionic liquids,^{11,12} and in supramolecular chemistry.^{13,14} $\{closo-1-CB₁₁\}$ $\{closo-1-CB₁₁\}$ $\{closo-1-CB₁₁\}$ clusters with substituents th[at c](#page-8-0)an be easi[ly](#page-8-0) [m](#page-9-0)odified are espe[cially](#page-9-0) useful because they may allow e[asy in](#page-9-0)corporation of boron clusters into more complex structures. A number of syntheses of derivatives with an easy-to-modify functional group that is bonded to the cluster carbon atom have been reported,¹ e.g., [1-R-closo-1-CB₁₁H₁₁]⁻ (R = CO₂H, NH₂, CN).15,16 In contrast, only a very limited number of regioselective [s](#page-8-0)yntheses for carba-closo-dodecaborate anions with a funct[ional](#page-9-0) group that is bonded to one of the boron atoms has been described. The Pd-catalyzed cross-coupling reaction of Grignard reagents with mono- and diiodinated ${[close-1-CB_{11}]}$ clusters represents one of these rare examples.^{17–22} Its usefulness stems from (i) the availability of the iodinated precursors, e.g., $[12$ -I-cl[oso](#page-9-0)[-1-](#page-9-0) CB_{11} H $_{11}$]⁻, $^{15,18^{'}}$ [7-I-12-X-closo-1- CB_{11} H $_{10}$]⁻ $(X = F, Cl, Br, OH)²³$ and $[7,12-I₂-*close*-1-CB₁₁H₁₀]⁻¹⁵$ and (ii) the broad range of Grig[nard](#page-9-0) reagents that can be used as starting materials. Ho[we](#page-9-0)ver, the reactions often require [a l](#page-9-0)arge excess of the Grignard reagent, high catalyst loadings, and long reaction times, and in most cases the yields do not exceed 60%. Thus, development of the further chemistry and application of the functionalized carba-closo-dodecaborate anions, which so far are accessible solely via a Kumada-type cross-coupling reaction, is often hampered because salts of the anions are available in small quantities only.

In this contribution we report on the microwave-assisted Kumada-type cross-coupling reaction of mono- and diiodinated carba-closo-dodecaborate anions. Application of microwave

irradiation resulted in higher yields and improved reaction conditions as reported earlier for related transition-metalcatalyzed cross-coupling reactions of organic substrates $24-27$ including Kumada-type cross-coupling reactions.²⁸ In the field of boron cluster chemistry only a few examples of micro[wave](#page-9-0)assisted reactions have been described so far, e.[g.,](#page-9-0) preparation of methylated carba-closo-dodecaborate anions^{29,30} and metallacarboranes.³¹ The inner salt 12-Ph₃P-closo-1-CB₁₁H₁₁ (2) was identified as a side product of the cross-coupli[ng r](#page-9-0)eactions for the first tim[e.](#page-9-0) Its selective synthesis is described as well. The crystal structure of the zwitterion 2 was obtained, and a comparison of the experimental bond distances to those of $[\text{Ph}_3\text{P}-\text{close-B}_{12}\text{H}_{11}]^-$ and to values derived from theoretical calculations is given. Furthermore, crystal structures of the $[\text{Et}_4\text{N}]^+$ salts of the anions $[12\text{-}Ph\text{-}closo\text{-}1\text{-} \text{CB}_{11}\text{H}_{11}]^-$ (1h), $[12\text{-}b$ (4-MeO-C_6H_4) -closo-1-CB₁₁H₁₁]⁻ (1j), and [12-(H₂C=(Me)- $CC\equiv C$)-closo-1- $CB_{11}H_{11}$ ⁻ (1g) are reported.

■ RESULTS AND DISCUSSION

Microwave-Assisted Kumada-Type Cross-Coupling Reactions. The microwave-assisted Pd-catalyzed cross-coupling reaction of [12-I-closo-1-CB $_{11}\mathrm{H}_{11}^-$ (1) with Me $_3\mathrm{SiC}\!\!\equiv\!\!\mathrm{CMgBr}$ results in the trimethylsilylalkynyl derivative $[12$ -Me₃SiC \equiv C- $\mathit{closo\text{-}1\text{-}CB}_{11}H_{11}^- (\textbf{1a})$ in a yield of 85% (Scheme 1). The yield of this reaction amounts to only 55% when it is performed under conventional heating instead of microwave [ir](#page-1-0)radiation as reported earlier.²²

In addition to the improved yield of the microwave-assisted synthesis, the r[eac](#page-9-0)tion time is reduced from 10 days to 1−3 h,

Received: December 7, 2011 Published: January 26, 2012

Scheme 1. Kumada-Type Cross-Coupling Reaction of 1 To Result in 1a as the Main Product and the Inner Salt 2 as a Side Product

depending on the amount of precatalyst $[PdCl₂(PPh₃)₂]$. The amount of the Pd complex is lowered from 30 mol % to 2−3 mol %. Furthermore, 2 equiv of the Grignard reagent $Me₃SiC \equiv CMgBr$ is sufficient, whereas as much as 14 equiv are required to achieve complete conversion of the conventional reaction. A comparison of the parameters of the microwaveassisted and conventional reactions is given in Table 1.

Table 1. Comparison of the Conventional and the Microwave-Assisted Pd-Catalyzed Cross-Coupling Reaction of 1 with $Me₃SiC \equiv CMgBr$ To Result in $[Et₄N]$ 1a

conditions	$Me3SiC \equiv C$ MgBr (equiv)	$[\text{PdCl}_{2}(PPh_{3})_{2}]$ \lceil mol % \rceil	t[h]	yield 1a $\lceil \% \rceil$	yield 2 $\lceil % \rceil$						
conventional heating 22	14	30	240	55	10						
microwave	2	2	3	85	$(<1)^a$						
microwave	\mathcal{D}	3		85	$((-1)^{a})$						
^{<i>a</i>} Determined by ¹¹ B{ ¹ H} NMR spectroscopy.											

The zwitterion 12-Ph₃P-closo-1-CB₁₁H₁₁ (2) was identified as a side product of the Kumada-type cross-coupling reaction performed with $[\text{PdCl}_2(\text{PPh}_3)_2]$ for the first time, and it was isolated in yields of 10% from product mixtures of conventional reactions. Its spectroscopic and structural characterization is presented in the successive section. The amount formed of 2 drops to less than 1% by applying microwave irradiation and optimized conditions as evident from NMR spectroscopic analyses of the reaction mixtures (Table 1).

Addition of CuI to the reaction mixture, which is used as a reagent in some related Pd-catalyzed cross-coupling reactions of iodinated boron clusters,³² did not result in a further improvement of the reaction but leads to a strong decrease of the reaction rate. An attempt[ed](#page-9-0) synthesis of 1a with conditions comparable to those of the microwave-assisted reactions listed in Table 1 but with 10 mol % of CuI resulted in a conversion of only 20% after 3 h.

Synthesis can easily be scaled up as demonstrated by preparation of almost 3 g of $Cs[12-HC \equiv C\text{-}close\text{-}1\text{-}CB_{11}H_{11}]$ $(Cs1b)$ in a one-step synthesis starting from 5 g of $Cs[12-I \text{closo-1-CB}_{11}H_{11}$ (Cs1) in a yield of 78%. This synthesis involves the reaction depicted in Scheme 1 followed by cleavage of the trimethylsilyl group. Preparation of Cs1b starting from Cs1 with $[Et_4N]$ 1a, which was synthesized as shown in Scheme 1, as intermediate was reported earlier with an overall yield of 49%.22,33

The protocol of the microwave-promoted Kumada-type cros[s-cou](#page-9-0)pling reaction was adopted for preparation of a variety of other derivatives of the carba-closo-dodecaborate anion with a functional group that is bonded via a carbon atom to the antipodal boron atom in yields of up to 90%. The study includes preparation of alkynyl, aryl, alkyl, and allyl substituents, and the results are summarized in Table 2. In general, significantly increased yields, shorter reaction times, lower catalyst loadings, and a reduction of the amou[nt](#page-2-0) of the respective Grignard reagent were achieved in comparison to the conventional reactions that were reported for some of the compounds by other groups or us. For example, yields of 52% and 54% were reported for $[Me_4N][12-Et-closo-1-CB_{11}H_{11}]$ $([Me₄N]11)¹⁸$ and $[Et₄N][12-PhC=C-*close*-1-CB₁₁H₁₁]$ $(\left[E_{t4}N\right]1f)^{22}$ respectively, whereas the microwave-assisted syntheses ga[ve](#page-9-0) yields of 84% for $[Et_4N]$ 11 and Cs1f.

The tetr[aet](#page-9-0)hylammonium salts of $[12\text{-}Ph\text{-}loso\text{-}1\text{-}CB_{11}H_{11}]^-$ (1h), [12-(4-MeO-C₆H₄)-closo-1-CB₁₁H₁₁]⁻ (1j), and [12- $(H_2C=(Me)CC\equiv C)$ -closo-1-CB₁₁H₁₁]⁻ (1g) were characterized by single-crystal X-ray diffraction (Figure 1). $[Et_4N]$ 1j crystallizes as solvate with one acetone molecule per formula unit of the $[Et_4N]^+$ salt, and the carba-closo-dodec[ab](#page-3-0)orate anion has crystallographic mirror symmetry. In contrast, neither anion 1h nor anion 1j shows any symmetry in the crystal.

The B12−Caryl distances in anions 1h and 1j are similar to those reported for related ${close-1-CB_{11}}$ clusters with aryl groups bonded to the antipodal boron atom, e.g., 1.591(4) Å in $\left[1-(4\text{-Me-}C_6H_4\text{-}4\text{-}C_6H_4)\text{-}12\text{-}(4\text{-Me-}C_6H_4)\text{-}close\text{-}CB_{11}H_{10}\right]^{2-2.0,21}$ The corresponding B12−C distance and d (C \equiv C) in the alkynyl derivative 1g are close to values derived for other ${12\textrm{-}RC}$ ${12\textrm{-}RC}$ ${12\textrm{-}RC}$ C -closo-1- CB_{11} } clusters, for example, in [12-PhC \equiv C-closo-1- $CB_{11}H_{11}$ ⁻ (1f) (d(B12–C) = 1.548(2) Å, d(C \equiv C) = 1.202(2) Å).³⁴ The bond distances of the B-C≡CC(Me)=CH₂ fragment in 1g are similar to those described for $(H_2C=(Me)$ - $CC\equiv C(C_6F_5)_2B(C_2H_4PHMes_2)$ $(d(B-C) = 1.587(3)$ Å, $d(C\equiv C) = 1.203(3)$ Å, $d(C-C) = 1.435(3)$ Å, $d(C=CH₂) =$ 1.322(4) Å, $d(C-CH_3) = 1.473(4)$ Å).³⁵

The Kumada-type Pd-catalyzed cross-coupling reaction of $H_2C=CHCH_2MgBr$ with Cs1 solely [re](#page-9-0)sulted in [12-H₂C= CHCH₂-closo-1-CB₁₁H₁₁^{$]$} (1n) as shown by NMR spectroscopy (Table 2, entries 12 and 13). During aqueous workup the allyl group partially isomerizes to a vinyl group to selectively give [12-(tra[ns](#page-2-0)-CH₃CH=CH)-closo-1-CB₁₁H₁₁]⁻ (1o). Hence, mixtures of both $[Et_4N]^+$ salts were obtained with a total yield of 77−79%. The extent of isomerization depends on the temperature during and the time of the aqueous workup procedure. Thus, one of the reactions described in the Experimental Section yielded a mixture of salts that consisted of 94% of $[Et_A N]$ 10 and 6% of $[Et_A N]$ 1n (entry 12) and the other of 16% of $[Et_4N]$ 10 and 84% of $[Et_4N]$ 1n (entry 13). However, the workup conditions were not fully optimized to exclusively yield either the allyl (1n) or the vinyl (1o) derivative. In contrast to the cross-coupling reaction with $Me₃SiC \equiv CMgBr$ to result in 1a (Scheme 1), CuI lead to a strong acceleration of the reaction with a change of the reaction time from 30 (entry 12) to 2.5 h (entry 13).

An analogous isomerization as observed for anions 1n and 10 was reported for preparation of $[Et_4N][1-Ph-12 (trains\text{-}CH_3CH=CH)$ -closo-1- $CB_{11}H_{10}$] during aqueous workup under acidic conditions.²¹ The conventional Kumada-type cross-coupling reaction yielded after isomerization the tetraethylammonium salt of the [car](#page-9-0)ba-closo-dodecaborate anion in a yield of 42%. No isomerization was found for the neutral allyl derivative $1-Me_3N-2-Ph-8-(H_2C=CHCH_2)-clos-1-CB_{11}H_9$, which was obtained also via a cross-coupling reaction using an allyl Grignard reagent in a yield of 82% .¹⁷

Table 2. Microwave-Assisted Kumada-Type Cross-Coupling Reaction of 1, 3, and 4

 R

┑╴

Ŗ л−

 a Isolated as either Cs⁺ or $[\text{Et}_4\text{N}]^+$ salt. b Not a fully optimized reaction. The Me₃Si group was removed during workup under basic aqueous conditions to result in the terminal alkyne. ^dMe₃SiCH₂MgCl. ^{*e*}Three mole percent of catalyst and 2 equiv of H₂C=CHCH₂MgBr were added at the beginning of the reaction, and after 24 h further 4 mol % [PdCl₂(PPh₃)₂] and 5 equiv of H₂C=CHCH₂MgBr were added. ^{*I*}The allyl derivative 1o partially isomerizes to the vinyl derivative [12-(*trans*-CH₃CH=CH)-closo-1-CB₁₁H₁₁] (1p). The extent depends on the conditions of the workup procedure as described in the Experimental Section. ${}^{g}H_{2}C=CHCH_{2}MgBr$, $[PdCl_{2}(PPh_{3})_{2}]$, and CuI were added in three equal batches.

The versatility of the novel microwave-assisted protocol is furthermore demonstrated [by](#page-3-0) [preparation](#page-3-0) [of](#page-3-0) [a](#page-3-0) series of carbacloso-dodecaborate anions with a functional group that is bonded via carbon to the boron atom at the 7 position of the cluster. The yields and conditions of these reactions that are collected in Table 3 are similar to those described for the analogous cross-coupling reactions starting from [12-I-closo-1- $CB_{11}\tilde{H}_{11}$ $\begin{bmatrix} 1 \end{bmatrix}$ in T[ab](#page-4-0)les 1 and 2.

In Table 3 one example for a microwave-assisted crosscoupling reaction of the [di](#page-1-0)iodinated precursor $[7,12-I_2-closo-1 \text{CB}_{11}\text{H}_{10}^-$ (8[\)](#page-4-0) is presented as well. The conditions for preparation of $[Et_4N][7,12-(HC\equiv C)_2$ -closo-1- $CB_{11}H_{10}]$ ($[Et_4N]8a$) via $[7,12$ - $(Me_3SiC \equiv C)_2$ -closo-1- $CB_{11}H_{10}$]⁻ are also highly improved in comparison to the conventional method similar to preparation of $[12\text{-Me}_3\text{SiC}\equiv C\text{-}c\text{-}l\text{-}c\text{-}B_{11}\text{H}_{11}]^-(1a)$ $(Table 1).²²$ The yield was improved from 38% for Cs8a (41% for the cross-coupling procedure²² and 93% for the desilylat[io](#page-1-0)[n r](#page-9-0)eaction³³) to 63%.

Synthesis and Characterization of $12-Ph₃P$ -closo-1-**CB**₁₁H₁₁ (2). The inner salt 12-Ph₃P-closo-1-CB₁₁H₁₁ (2), which is the side product of all Kumada-type cross-coupling reactions presented in Tables 1 and 2, was selectively synthesized in a yield of 88% via a microwave-assisted Pdcatalyzed cross-coupling reaction [as](#page-1-0) shown in Scheme 2. The precatalyst of the synthesis is $[Pd(PPh₃)₄]$. Similar to preparation of the isoelectronic anionic triphenylphosphan[e d](#page-4-0)erivative $[\text{Ph}_3\text{P-}closo-B_{12}\text{H}_{11}]^-$, which was described earlier,³⁶ addition of a carbonate salt was necessary. Without either K_2CO_3 or $[Pd(PPh₃)₄]$ no conversion of 1 to result in 2 was o[bse](#page-9-0)rved. However, the function of K_2CO_3 remains unclear. Attempted synthesis of 2 using the same reaction conditions but with conventional heating instead of microwave irradiation resulted in a much slower reaction, and thus, the reaction was aborted after a few percent of conversion.

Zwitterion 2 was characterized by multi-NMR spectroscopy and elemental analysis. The $31P$ NMR signal of 2 is shifted

Figure 1. Anions $[12\text{-}Ph\text{-}closo\text{-}1\text{-}CB_{11}H_{11}]^-$ (1h, left), $[12\text{-}(4\text{-}MeO\text{-}1)]$ C_6H_4)-closo-1-CB₁₁H₁₁]⁻ (1j, middle), and [12-(H₂C=(Me)CC= C)-closo-1-CB₁₁H₁₁][–] (1g, right) in the crystals of their $[Et_4N]^+$ salts. Selected bond lengths [Angstroms] and angles [degrees]: 1h B12−C2 1.583(2); 1j B12−C2 1.582(4), C5−O1 1.372(4), O1−C8 1.420(4), $C5-O1-C8$ 117.0(2); 1g B12–C2 1.545(2), C2≡C3 1.197(2), C3– C4 1.431(2), C4=C5 1.322(3), C4–C6 1.494(3), B12–C2≡C3 177.9(2), C2≡C3−C4 179.0(2), C3−C4=C5 121.0(2), C3−C4− $C6 116.1(2)$, C5=C4-C6 123.0(2).

to a lower resonance frequency than the signal of $[Ph_3P$ closo-B₁₂H₁₁]⁻ (Table 4). The ³¹P⁻¹³C coupling constant of 2 (147 Hz) is slightly larger compared to ${}^{1}J({}^{31}P,{}^{13}C)$ of $[Ph_3P-{}$ closo- $B_{12}H_{11}$][–] (134 H[z\)](#page-5-0).

A single crystal of the neutral inner salt 2 was studied by X-ray diffraction, and a molecule in the crystal is depicted in Figure 2. In Table 4 selected bond distances of 2 are compared to values of $[\mathrm{Ph_3P\text{-}loso\text{-}B_{12}H_{11}}]^-$ and values derived from DFT and ab [i](#page-5-0)nitio calc[ula](#page-5-0)tions for both of them. The experimental bond properties of the closo-boron species are well reproduced by the DFT and (RI)-MP2 calculations, which confirms the differences between both cluster derivatives as suggested by the experimental data. The B−P distance in 2 of 1.944(3) Å is slightly longer than $d(B-P)$ in $[nBu₄N][Ph₃P_{-c}loso-B₁₂H₁₁]$ of $1.928(2)$ Å. The mean value of the three phosphorus carbon distances is slightly shorter for 2 compared to the anion, which contrasts the trend in d(B−P). The longer B−P distance in 2 is accompanied by a smaller B−P−C angle. The inner cluster bond distances of 2 are close to values derived for other {closo- $1-CB_{11}$ } clusters from single-crystal X-ray diffraction and theoretical calculations, e.g., for $[12\text{-}PhC\equiv C\text{-}closo-1\text{-}CB_{11}H_{11}]^ (1f).^{22,34}$

■ [SUM](#page-9-0)MARY AND CONCLUSION

Microwave irradiation instead of conventional heat transfer results in a tremendous improvement of the Pd-catalyzed Kumada-type cross-coupling reaction of mono- and diiodinated carba-closo-dodecaborate anions. The enhancement of the reactions includes higher yields, shorter reaction times, lower catalyst loadings, and a reduction of the Grignard reagent. Probably, application of microwave irradiation to other crosscoupling reactions in the field of boron cluster chemistry will lead to similar improvements. A first example is preparation of the inner salt 12-Ph₃P-closo-1-CB₁₁H₁₁ (2) that can be prepared in 4 h in high yield from Ph₃P and [12-I-closo-1-CB₁₁H₁₁]^{$=$} (1), whereas the reaction is very slow when conventional heat transfer is used.

Carba-closo-dodecaborate anions with different functional groups that are bonded via carbon to the antipodal boron atom or to one of the boron atoms of the lower belt or to both of them are now much more easily accessible. This will facilitate the study of their reactions and properties, for example, the coordination chemistry of carba-closo-dodecaboranylethynido ligands in coordination chemistry as in $[{12-(Me_3PAu)_2C\equiv C \c{close-1-CB_{11}H_{11}}_2$.¹⁴

EXPERIMEN[TA](#page-9-0)L SECTION

General Methods. ¹H, ¹¹B, ¹³C, ¹⁹F, and ³¹P NMR spectra were recorded at 25 °C either in CD₃CN, $(CD_3)_2$ CO, or toluene- d_8 on a Bruker Avance III 400 spectrometer operating at 400.17 (¹H), 128.39 (^{11}B) , 100.62 MHz (^{13}C) , 376.45 MHz (^{19}F) , and 128.39 MHz (^{31}P) . The NMR signals were referenced against TMS ($\rm ^1H, {^{13}C}),$ BF₃ OEt₂ in CD₃CN (¹¹B), CFCl₃ (¹⁹F), and H₃PO₄ (85%) in H₂O (³¹P) as external standards. Assignments of the ¹H and ¹¹B NMR signals are supported by ${}^{11}B\{{}^{1}H\} - {}^{1}H\{{}^{11}B\}$ 2D^{37,38} and ${}^{11}B\{{}^{1}H\} - {}^{11}B\{{}^{1}H\}$ COSY^{39,40} experiments. Infrared and Raman spectra were recorded at room temperature on an Excalibur F[TS 35](#page-9-0)00 spectrometer (Digilab, Germ[any\)](#page-9-0) with an apodized resolution of 2 (IR) and 4 cm⁻¹ (Raman), respectively. IR spectra were measured in the attenuated total reflection (ATR) mode in the region of 4000–530 cm⁻¹. Raman spectra were measured using the 1064 nm excitation line of a Nd/YAG laser on crystalline samples contained in melting point capillaries in the region of 3500–80 cm⁻¹. Elemental analyses (C, H, N) were performed with a Euro EA3000 instrument (HEKA-Tech, Germany).

Chemicals. All standard chemicals were obtained from commercial sources. Tetrahydrofuran was distilled from K/Na alloy under a nitrogen atmosphere and stored in a flask equipped with a valve with a PTFE stem (Young, London) over molecular sieves (4 Å) under an argon atmosphere. The following alkynes were obtained from commercial sources: Me₃SiC=CH, Apollo Scientific; Et₃SiC=CH, ABCR; iPr₃SiC≡CH, Sigma-Aldrich; nC₄H₉C≡CH, ACROS; 1-Br-4-(Me₃SiC \equiv C)-C₆H₄, Sigma-Aldrich. Solutions of Me₃SiC \equiv CMgBr, Et₃SiC=CMgBr, iPr₃SiC=CMgBr, and nC_4H_9C =CMgBr in THF (0.75 mol L[−]¹) were prepared from the corresponding ethyne and EtMgBr (1 mol L^{-1} in THF) and kept in round-bottom flasks with a valve with a PTFE stem (Young, London) at 4 °C. The aryl Grignard reagents were synthesized from the corresponding aryl bromide and Mg in THF (1 mol L⁻¹). EtMgBr (1 mol L⁻¹ in THF), PhC≡CMgBr (1 mol L⁻¹ in THF), Me₃SiCH₂MgCl (1 mol L⁻¹ in Et₂O), and H₂C= CHCH₂MgBr (1 mol L⁻¹ in Et₂O) were obtained from Sigma-Aldrich. H₂C=(Me)CC≡CMgBr (0.5 mol L⁻¹ in THF) was prepared from $(Me₃SiO)Me₂CC \equiv CH$ and EtMgBr. Cs[12-I-closo-1-CB₁₁H₁₁]^{15,18} and $Cs[7,12-I_2-closo-1-CB_{11}H_{10}]$,¹⁵ were synthesized according to modified literature procedures. The monoiodinated carborates Cs[\[7-I-](#page-9-0)12-Hal-closo-1- $CB_{11}H_{10}$] (Hal = [F, C](#page-9-0)l, Br) were prepared as described elsewhere.²³ Cs[1-Ph-closo-1-CB₁₁H₁₁] was prepared from *nido-*B₁₀H₁₄ via $[\text{Et}_4N]$ [6-Ph-nido-6-CB₉H₁₁].^{41–44} Iodination resulting in Cs[1-Ph-12-I-closo-1- $CB_{11}H_{10}$] followed a known protocol.^{19,21} Cs[1-Me-12-I- $\textit{closo-1-CB}_{11}\text{H}_{10}\text{]}$ was synthesiz[ed as](#page-9-0) described in the literature.¹⁸ Cesium carba-closo-1-dodecaborate was obtained f[rom](#page-9-0) Katchem spol. sro (Praha, Czech Republic) or synthesized from [Me₃NH][ni[do](#page-9-0)- $B_{11}H_{14}$]⁴⁵ according to a literature procedure.⁴⁶

Single-Crystal X-ray Diffraction. Colorless crystals of 2 suitable for a [X-r](#page-9-0)ay diffraction study were grown [fro](#page-9-0)m toluene by slow evaporation of the solvents. Slow uptake of diethyl ether into solutions of $[Et_4N]$ **1h**, $[Et_4N]$ **1j** Me_2CO , and $[Et_4N]$ **1g** in acetone resulted in colorless crystals. A crystal of 2 was investigated with a Stoe STADI CCD diffractometer, and crystals of the other three substances were studied with an Oxford Xcalibur diffractometer equipped with an EOS detector using Mo K α radiation ($\lambda = 0.71073$ Å). All structures were solved by direct methods, $47,48$ and refinement is based on full-matrix least-squares calculations on $F^{2,48,49}$.

The positions of most [of th](#page-9-0)e hydrogen atoms in the crystal structures were located via ΔF synth[eses.](#page-9-0) The only exceptions are those of the hydrogen atoms of the disordered acetone molecule in $[Et_4N]$ 1j·Me₂CO. All non-hydrogen atoms were refined anisotropically.

 a Isolated either as Cs⁺ or $[\text{Et}_4\text{N}]^+$ salt. ${}^b\text{The Me}_3\text{Si}$ group was removed during workup under basic aqueous conditions to result in the terminal alkyne. ^cNot a fully optimized reaction. ^dThree mole percent of catalyst and 3 equiv of Me₃SiC≡CMgBr were added at the beginning of the reaction, and after 5 h additional 3 mol % $[PdCl₂(PPh₃)₂]$ and 3 equiv of Me₃SiC \equiv CMgBr were added.

Scheme 2. Microwave-Assisted Pd-Catalyzed Synthesis of 2 (yield 88%)

Most of the hydrogen atoms were refined using idealized bond lengths as well as angles.

Calculations were carried out using the WinGX program package. 50 Molecular structure diagrams were drawn with the program Diamond 3.2 g^{51} Experimental details, crystal data, and CCDC numbers a[re](#page-9-0) collected in Table 5. Supplementary crystallographic data for this publi[cat](#page-9-0)ion are deposited in the Supporting Information or can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccd[c.](#page-6-0)cam.ac.uk/data_request/cif.

Quantum Chemical Calculations. [Density](#page-8-0) [function](#page-8-0)al calculations $(DFT)^{52}$ were carried out using Becke's three-parameter hybrid functional [and the Lee](www.ccdc.cam.ac.uk/data_request/cif)−Yang−Parr correlation functional (B3LYP)^{53−55} using the Gaussian03 program suite.⁵⁶ Geometries were optimi[zed](#page-9-0), and energies were calculated with the $6-311++G(d,p)$ basis set[s.](#page-9-0) [Di](#page-9-0)ffuse functions were incorporated bec[au](#page-9-0)se improved energies are obtained for anions.⁵⁷ Structures represent true minima with no imaginary frequency on the respective hypersurface. Geometries were optimized at the [sec](#page-9-0)ond-order Møller−Plesset perturbation (MP2) level of theory also using the resolution-of-the-identity approximation [(RI)-CC2 module]⁵⁸ in combination with the def2-TZVPP basis sets and auxiliary bases.⁵⁹

General Procedure for th[e](#page-9-0) Microwave-Assisted Cross-Coupling Reactions. The iodinat[ed](#page-9-0) carba-closo-dodecaborate and $[\text{PdCl}_{2}(\text{PPh}_{3})_{2}]$ was dissolved in dry THF (2-10 mL per mmol cluster) under an Ar atmosphere in a glass finger (70 mL) equipped with a valve with a PTFE stem (Young, London) and fitted with a magnetic stirring bar. A solution of the respective Grignard reagent in THF (0.75−1.0 mmol mL[−]¹) was added via syringe. The reaction mixture was heated to 55 °C by microwave irradiation (CEM Discover S-Klasse Plus (SP)), and the progress of the reaction was periodically checked by ¹¹B{¹H} NMR spectroscopy. The reaction mixture was

poured into deionized water (2−10 mL per mmol cluster) after complete conversion, and most of the THF was removed under reduced pressure. The black residue was filtered off, and the water was stored separately. The black residue was dissolved in a minimum amount of CH₂Cl₂ and extracted twice with deionized water (2 \times ~20 mL per mmol cluster). All water layers were combined, and the Cs⁺ or $[Et₄N]^+$ salt of the respective carba-closo-dodecaborate anion was precipitated by addition of a concentrated aqueous solution of CsCl or $[Et₄N]Br$ (2 mmol per mmol cluster), respectively. The resulting white precipitate was collected by filtration and dried in a vacuum.

 $[Et_4N][12-Me_3SiC \equiv C-closo-1-CB_{11}H_{11}]$ ($[Et_4N]1a$). $[Et_4N]1a$ was prepared from $Cs[12-I-closo-1-CB₁₁H₁₁]$ (200 mg, 0.50 mmol) and Me₃SiC \equiv CMgBr (1.3 mL, 1 mmol) with $[PdCl₂(PPh₃)₂]$ (10 mg, 0.015 mmol) as precatalyst. Yield: 157 mg (0.43 mmol, 85%). Spectroscopic data and results of elemental analysis have been reported earlier.²²

Cs[12-HC=C-closo-1-CB₁₁H₁₁] (Cs1b). Cs[12-I-closo-1-CB₁₁H₁₁] $(5.00 \text{ g}, 12.44 \text{ mmol})$ $(5.00 \text{ g}, 12.44 \text{ mmol})$ $(5.00 \text{ g}, 12.44 \text{ mmol})$, Me₃SiC \equiv CMgBr $(33 \text{ mL}, 25 \text{ mmol})$, and $[\text{PdCl}_2(\text{PPh}_3)_2]$ (262 mg, 0.375 mmol) were used. $[\text{Et}_4\text{N}]$ 1a was not dried after precipitation but immediately treated with hydrochloric acid (50 mL, 2 mol L[−]¹) and diethyl ether (200 mL). The ethereal layer was separated after complete dissolution of the tetraethylammonium salt, and the aqueous phase was extracted three times with diethyl ether $(3 \times 100 \text{ mL})$. The combined organic phases were dried with MgSO₄. The magnesium sulfate was filtered off, and a saturated aqueous solution of cesium carbonate (5 g, 15.3 mmol) was added to the solution. Ether was removed using a rotary evaporator, and acetone (200 mL) was added to the remaining solid. The solution was dried with Cs_2CO_3 and filtered, and most of the solvent was removed with a rotary evaporator to result in a concentrated solution of Cs1b (5 mL). The cesium salt was precipitated by addition of chloroform (300 mL), filtered, and dried in a vacuum. Yield: 2.91 g (9.67 mmol, 78%). Spectroscopic data and results of the elemental analysis for Cs1b have been reported earlier.³³

Attempted Synthesis of the Salt of [12-Me₃SiC=C-closo-1- $CB_{11}H_{11}$ ^{\vdash} (1a) in the Presenc[e o](#page-9-0)f Cul. The reaction was performed as described for the general procedure with $Cs[12-I-closo-1-CB₁₁H₁₁]$ (200 mg, 0.50 mmol) and $Me₃SiC \equiv CMgBr$ (1.3 mL, 1 mmol) with $[{}PdCl_{2}(PPh_{3})_{2}]$ (10 mg, 0.015 mmol), but CuI (10 mg, 0.050 mmol) was added. After 3 h only 20% of the starting material had reacted to 1a and small amounts of 2. Because of the very slow conversion the reaction was discontinued.

Table 4. Comparison of Selected Experimental and Calculated^a Data of 12-Ph₃P-closo-1-CB₁₁H₁₁ (2) and [Ph₃P-closo- $B_{12}H_{11}$ ^{-b,c}

12-Ph ₃ P-closo-1-CB ₁₁ H ₁₁ (2)											
method		$\delta(^{31}P)$ $^1J(^{31}P, ^{11}B)$	$d(B12-P)$	$d(P-C_{\text{ipso}})^d$	\angle (B12-P-C)	$d(C_{cluster} - B)$ 2/3/4/5/6	d(B2/3/4/5/6) $-B2/3/4/5/6$	$d(B2/3/4/5/6-$ B7/8/9/10/11)	d(B7/8/9/10/11) $-B7/8/9/10/11)$	d(B7/8/9/10/11) $-B12)$	
exptl	2.3	147	1.944(3)	1.808(2)	112.58(11)	1.696(4)	1.766(5)	1.765(5)	1.786(4)	1.771(4)	
B3LYP			1.971	1.837	113.04	1.705	1.782	1.770	1.798	1.779	
MP2			1.904	1.791	112.93	1.699	1.778	1.766	1.794	1.768	
$[Ph_3P\text{-}closo-B_{12}H_{11}]$											
method	$\delta(^{31}P)$	$^{1}J(^{31}P, ^{11}B)$	$d(B1-P)$	$d(P-C_{\text{ipso}})^d$	\angle (B1-P-C)	d(B) 7/8/9/10/11 $-B12)$	$d(B7/8/9/10/11-$ B7/8/9/10/11	$d(B2/3/4/5/6-B)$ 7/8/9/10/11	$d(B2/3/4/5/6-$ B2/3/4/5/6	$d(B1-B2)$	
										3/4/5/6	
exptle	6.8	134	1.928(2)	1.816(2)	113.48(9)	1.787(4)	1.787(4)	1.778(3)	1.796(3)	1.780(3)	
B3LYP			1.949	1.845	114.38	1.784	1.788	1.779	1.799	1.775	
MP ₂			1.869	1.795	114.27	1.761	1.786	1.775	1.796	1.761	

 a Methods: B3LYP/6-311++G(d,p) and (RI)-MP2/def2-TZVPP. b Distances in Angstroms, angles in degrees, chemical shifts in parts per million, and coupling constants in Hertz. "Mean values for $C_{5\nu}$ symmetry of the clusters. "Mean value. $[nBu_4N][Ph_3P\textrm{-}loseo-P_{12}H_{11}]$.³⁶

Figure 2. (a) Molecule of 12-Ph₃P-closo-1-CB₁₁H₁₁ (2) in the crystal (displacement ellipsoids at the 35% probability level). (b) Calculated structures at the B3LYP/6-311++G(d,p) level of theory, and labeling schemes for the cluster atoms of 2 and $[\rm Ph_3P\text{-}closo\text{-}B_{12}H_{11}]^+$.

[Et₄N][12-Et₃SiC=C-closo-1-CB₁₁H₁₁] ([Et₄N]1c). [Et₄N]1c was synthesized from Cs[12-I-closo-1- $CB_{11}H_{11}$] (200 mg, 0.50 mmol) and Et₃SiC \equiv CMgBr (1.3 mL, 1 mmol) with $[PdCl_2(PPh_3)_2]$ (10 mg, 0.015 mmol). Yield: 145 mg (0.35 mmol, 70%). NMR data for anion 1c: ¹H{¹¹B} NMR ((CD₃)₂CO, δ ppm): 2.14 (sextet, 1H, ³J(¹H,¹H) = 3.3 Hz, CH_{cluster}), 1.71 (s, 5H, BH7-11), 1.61 (s, 5H, BH2-6), 0.92 $(t, 9H, {}^{3}J({}^{1}H, {}^{1}H) = 7.9$ Hz, ${}^{1}J({}^{13}C, {}^{1}H) = 125.8$ Hz, CH₃), 0.45 (q, 6H,
 ${}^{3}J({}^{1}H, {}^{1}H) = 7.9$ Hz, ${}^{1}J({}^{13}C, {}^{1}H) = 118.4$ Hz, SiCH₂). ${}^{13}C({}^{1}H)$ NMR $((CD_3)_2CO, \ \delta$ ppm): 124.59 (q, 1C, ¹J(¹³C,¹¹B) = 98.9 Hz, B12⁻¹³C≡C), 94.01 (q, 1C, ²J(¹³C,¹¹B) = 15.7 Hz, B12-C≡¹³C), 48.75 (s, 1C, C_{cluster}), 7.82 (s, 3C, CH₃), 5.44 (s, 3C, ¹J(²⁹Si,¹³C) = 55.8 Hz, 1 J(13 C, 13 C) = 31.6 Hz, Si 13 CH₂). 11 B NMR ((CD₃)₂CO, δ ppm): -7.4 (s, 1B, B12), -12.2 (d, 5B, 1 J(11 B, 1 H) = 139, B7-11), -16.7 (d, 5B, $\frac{1}{1}$ $(1^{11}B, {}^{1}H) = 151$ Hz, B2–6). IR/Raman (cm⁻¹): 2114 cm⁻¹ (ν (C≡C)). MALDI-MS *m/z* (isotopic abundance > 60) calcd for 1c ($[C_9H_{26}B_{11}Si]^-$): 280 (75%), 281 (100%), 282 (80%). Found: 280 (80%), 281 (100%), 282 (93%). Anal. Calcd for $C_{17}H_{46}B_{11}NSi$: C, 49.61; H, 11.27; N, 3.40. Found: C, 48.65; H, 11.27; N, 3.36.

 $Cs[12-iPr₃SiC \equiv C\text{-}closo-1\text{-}CB_{11}H_{11}]$ (Cs1d). $Cs[12-I\text{-}closo-1\text{-}Cs]$ $CB_{11}H_{11}$] (1 g, 2.49 mmol), $[PdCl_2(PPh_3)_2]$ (50 mg, 0.075 mmol), and iPr₃SiC=CMgBr (6.5 mL, 5 mmol) were used. Yield: 700 mg $(1.54 \text{ mmol}, 61\%)$. ${}^{1}H{^{11}B}$ NMR $((CD_3)_2CO, \delta$ ppm): 1.59 (s, 10H, BH2−11), 2.26 (s, 1H, CH_{cluster}), 1.02 (d, 18H, ¹J(¹³C,¹H) = 125 Hz,
³I(¹H¹H) – 6.6 Hz, CH), 0.95 (hentet, 3H, ³I(¹H¹H) – 6.6 Hz $J(^{1}H,^{1}H) = 6.6$ Hz, CH₃), 0.95 (heptet, 3H, ³ $J(^{1}H,^{1}H) = 6.6$ Hz, SiCH). ¹³C{¹H} NMR ((CD₃)₂CO, δ ppm): 125.82 (q, 1C, $1/[$ ¹³C₁¹¹B) = 98 Hz, B12-¹³C \equiv C), 92.95 (q, 1C, $2/[$ ¹³C₁¹¹B) = 15 Hz, B12−C≡¹³C), 48.70 (s, 1C, C_{cluster}), 19.18 (s, 6C, ²J(¹³C,¹³C) = 31 Hz, CH₃), 12.32 (s, 3C, ¹J(²⁹Si,¹³C) = 56 Hz, ²J(¹³C,¹³C) = 31 Hz, SiC). ¹¹B NMR ((CD₃)₂CO, δ ppm): −7.6 (s, 1B, B12), −12.3 (d, 5B, $J(^{11}B, ^{1}H) = 139$ Hz, B7-11), -16.7 (d, SB, ¹J(¹¹B,¹H) = 152 Hz,

B2−6). IR/Raman (cm⁻¹): 2116 cm⁻¹ (ν (C≡C)). MALDI-MS m/z (isotopic abundance > 60) calcd for 1d ($[C_{12}H_{32}B_{11}Si]^-$): 322 (67%), 323 (100%), 324 (70%). Found: 322 (74%), 323 (100%), 324 (79%). Anal. Calcd for C₁₂H₃₂B₁₁CsSi: C, 31.59; H, 7.07. Found: C, 31.76; H, 7.26.

 $Cs[12-nC_4H_9C\equiv C\text{-}c\log_2 1-CB_{11}H_{11}]$ (Cs1e). Cs1e was prepared from Cs[12-I-closo-1-CB₁₁H₁₁] (500 mg, 1.25 mmol) and $nC_4H_9C \equiv$ CMgBr (5 mL, 3.75 mmol) with $[PdCl_2(PPh_3)_2]$ (25 mg, 0.035) mmol). Yield: 460 mg (1.41 mmol, 70%). ¹H{¹¹B} NMR ((CD₃)₂CO, δ ppm): 2.10 (sextet, 1H, ³J(¹H,¹H) = 3.4 Hz, CH_{cluster}), 1.99 (tm, 2H,
³J(¹H⁻¹H) – 6.9 Hz, C=C-CH), 1.67 (s, 5H, BH7-11), 1.60 (s, 5H $J(^{1}H, {}^{1}H) = 6.9$ Hz, C \equiv C $-CH_{2}$), 1.67 (s, 5H, BH7 -11), 1.60 (s, 5H, BH2−6), 1.32 (m, 4H, CH₂CH₂), 0.83 (tm, 3H, ³ $J(^1H, ^1H) = 7.1$ Hz, CH₃). ¹³C{¹H} NMR ((CD₃)₂CO, δ ppm): 93.54 (q, 1C, ²J(¹³C,¹¹B) = 18.6 Hz, B12–C \equiv ¹³C), 91.42 (q, 1C, ¹J(¹³C,¹¹B) = 104.2 Hz, B12−¹³C≡C), 47.92 (s, 1C, C_{cluster}), 32.36 (s, 1C, CH₂), 22.51 (s, 1C, CH₂), 20.14 (s, 1C, CH₂), 13.90 (s, 1C, CH₃). ¹¹B NMR ((CD₃)₂CO, δ ppm): -6.7 (s, 1B, B12), -12.34 (d, 5B, ¹J(¹¹B,¹H) = 138 Hz B7-11), -16.9 (d, 5B, $\frac{1}{1}$ $($ ¹¹B₁¹H) = 151 Hz, B2–6). IR/Raman (cm⁻¹): 2188 cm⁻¹ (ν (C \equiv C)). MALDI-MS m/z (isotopic abundance > 60) calcd for 1e $([C_7H_{20}B_{11}]^-)$: 222 (75%), 223 (100%), 224 (80%). Found: 222 (81%), 223 (100%), 224 (88%). Anal. Calcd for C₇H₂₀B₁₁Cs: C, 23.61; H, 5.66. Found: C, 23.58; H, 5.51.

 $Cs[12-PhC \equiv C\text{-}closo-1-CB_{11}H_{11}]$ (Cs1f). Cs1f was synthesized from $Cs[12-I-closo-1-CB₁₁H₁₁]$ (200 mg, 0.50 mmol) and PhC= CMgBr (1.3 mL, 1 mmol) with $[PdCl_2(PPh_3)_2]$ (10 mg, 0.015 mmol). Yield: 158 g (0.42 mmol, 84%). Spectroscopic data and results of elemental analysis have been published elsewhere.²²

[Et₄N][12-(H₂C=(Me)CC=C)-closo-1-CB₁₁H₁₁] ([Et₄N]1g). Cs-[12-I-closo-1-CB₁₁H₁₁] (500 mg, 1.25 mmol), [PdCl₂(PPh₃)₂] (75 mg, 0.110 mmol), and $H_2C=(Me)CC\equiv CMgBr$ (7.6 mL, 3.8 mmol) were Table 5. Selected Crystal Data and Details of the Refinement of the Crystal Structures of 12-Ph₃P-closo-1-CB₁₁H₁₁ (2), $[Et_4N][12-Ph-clos-1-CB_{11}H_{11}]$ $([Et_4N]1h)$, $[Et_4N][12-(4-MeO-C_6H_4)-clos-1-CB_{11}H_{11}]$ Me_2CO $([Et_4N]1jMe_2CO)$, and $[Et_4N][12-(H_2C=(Me)CC\equiv C)-closo-1-CB_{11}H_{11}]$ ($[Et_4N]1g$)

used. Yield: 274 mg (0.81 mmol, 65%). NMR data for anion 1g. ¹H{¹¹B} NMR ((CD₃)₂CO, δ ppm): 4.91 (m, 2H, C=CH₂), 2.17 (sextet, 1H, 3 J(1 H, 1 H) = 3.1 Hz, CH_{cluster}), 1.74 (s, 5H, BH7–11), 1.73 (pseudo triplet, 3H, 4 J $({}^{1}$ H, 1 H) \approx 1.2 Hz, CH₃), 1.64 (s, 5H, BH2−6). ¹³C{¹H} NMR ((CD₃)₂CO, δ ppm): 130.26 (s, 1C, ¹³C= CH₂), 118.03 (s, 1C, CH₂), 102.35 (q, 1C, ¹J(¹³C,¹¹B) = 103.3 Hz, B12−¹³C≡C), 94.87 (q, 1C, ²J(¹³C,¹¹B) = 19.1 Hz, B12−C≡¹³C), 48.80 (s, 1C, CH_{cluster}), 24.39 (s, 1C, CH₃). ¹¹B NMR ((CD₃)₂CO, δ ppm): –6.9 (s, 1B, B12), –12.3 (d, 5B, 1 J(11 B, 1 H) = 138 Hz, B7–11), −16.7 (d, 5B, ¹ J(11B,1 H) = 151 Hz, B2−6). IR/Raman (cm[−]¹): 2170 cm⁻¹ (ν (C≡C)), 1601 (ν (C=C)). MALDI-MS m/z (isotopic abundance > 60) calcd for $1g$ ([C₆H₁₆B₁₁]⁻): 206 (75%), 207 (100%), 208 (80%). Found: 206 (96%), 207 (100%), 208 (99%). Anal. Calcd for C₁₄H₃₆B₁₁N: C, 49.84; H, 10.75; N, 4.15. Found: C, 46.61; H, 10.38; N, 4.39.

[Et₄N][12-Ph-closo-1-CB₁₁H₁₁] ([Et₄N]1h). [Et₄N]1h was prepared from $Cs[12-I-closo-1-CB₁₁H₁₁]$ (100 mg, 0.25 mmol) and PhMgBr (0.8 mL, 0.8 mmol) with $[\text{PdCl}_2(\text{PPh}_3)_2]$ (5 mg, 0.007 mmol). Yield: 66 mg (0.19 mmol, 75%). NMR data for anion 1h. ¹H{¹¹B} NMR ((CD₃)₂CO, δ ppm): 7.41–7.39 (m, 2H, Ph), 7.02– 6.90 (m, 3H, Ph), 2.22 (sextet, 1H, 3 J(1 H, 1 H) = 3.3 Hz, CH_{cluster}), 1.79 (s, 5H, BH7−11), 1.73 (s, 5H, BH2−6). 13C{1 H} NMR ((CD3)2CO, δ ppm): 148.28 (q, 1C, 1 J(13 C, 11 B) = 74.9 Hz, C_{ipso}), 133.65 (s, 2C, Ph), 126.82 (s, 2C, Ph), 125.20 (s, 1C, C_{para}), 47.10 (s, 1C, C_{cluster}). ¹¹B NMR ((CD₃)₂CO, δ ppm): 2.70 (s, 1B, B12), −12.51 (d, 5B, $J(^{11}B, ^{1}H) = 136$ Hz, B7-11), -16.6 (d, SB, ¹J(¹¹B,¹H) = 150 Hz, B2−6). MALDI-MS m/z (isotopic abundance > 60) calcd for 1h $([C_7H_{16}B_{11}]^-)$: 218 (75%), 219 (100%), 220 (80%). Found: 218 (89%), 219 (100%), 220 (94%). Anal. Calcd for $C_{15}H_{36}B_{11}N:$ C, 51.57; H, 10.39; N, 4.01. Found: C, 48.83; H, 10.43; N, 4.01.

 $Cs[12-(4-Me_3Si-C_6H_4)-closo-1-CB_{11}H_{11}]$ (Cs1i). The starting materials were $Cs[12-I-closo-1-CB₁₁H₁₁]$ (200 mg, 0.50 mmol), $[PdCl_2(PPh_3)_2]$ (10 mg, 0.015 mmol), and 4-Me₃Si–C₆H₄MgBr (1 mL, 1 mmol). Yield: 155 mg (0.36 mmol, 73%). ¹ H{11B} NMR $((CD₃)₂CO, \delta$ ppm): 7.40−7.18 (m, 4H, Ph), 2.22 (sextet, 1H, $J(^{1}H,^{1}H) = 3.6$ Hz, CH_{cluster}), 1.80 (s, 5H, B7–11), 1.73 (s, 5H,

B2–6), 0.18 (s, 9H, $\binom{1}{1}$ (¹³C,¹H) = 118.7 Hz, CH₃). ¹³C{¹H} NMR $((CD_3)_2CO, \delta$ ppm): 149.06 $(q, {}^1J({}^{13}C, {}^{11}B) \approx 75$ Hz, 1C, C_{ipso}), 135.18 (s, 1C, C_{para}), 133.27 (s, 2C, Ph), 131.90 (s, 2C, Ph), 47.18 (s, 1C, C_{cluster}), -0.85 (s, 3C, CH₃). ¹¹B NMR ((CD₃)₂CO, δ ppm): 2.5 $(s, 1B, B12), -12.49$ (d, 5B, $\frac{1}{1}$ $(1^{11}B, ^{1}H) = 138$ Hz, B7-11), -16.5 (d, 5B, 1 J(11 B, 1 H) = 151 Hz, B2–6). MALDI-MS m/z (isotopic abundance > 60) calcd for 1i ([C₁₀H₂₄B₁₁Si]⁻): 290 (75%), 291 (100%), 292 (80%). Found: 290 (78%), 291 (100%), 292 (83%). Anal. Calcd for C₁₀H₂₄B₁₁SiCs: C, 28.31; H, 5.70. Found: C, 29.02; H, 5.73.

[Et₄N][12-(4-MeO−C₆H₄)-closo-1-CB₁₁H₁₁] ([Et₄N]1j). Cs[12-I- $\text{closo-1-CB}_{11}H_{11}$] (200 mg, 0.50 mmol), $[\text{PdCl}_2(\text{PPh}_3)_2]$ (10 mg, 0.015) mmol), 4-MeO-C₆H₄MgBr (1 mL, 1 mmol) were used. Yield: 141 mg (0.37 mmol, 74%). NMR data for anion 1j. ${}^{1}H{^{11}B}$ NMR $((CD₃), CO, \delta$ ppm): 7.30–7.26 (m, 2H, Ph), 6.63–6.59 (m, 2H, Ph), 3.68 (s, $3\overline{H}$, $1/(13\overline{C})$ ¹H) = 143.0 Hz, OCH₃), 2.21 (sextet, 1H, $31/(1\overline{H})$ = 3.2 Hz, CH, \overline{H}) 1.76 (s, SH, BH7–11) 1.72 (s, SH $J(^{1}H,^{1}H) = 3.2$ Hz, CH_{cluster}), 1.76 (s, 5H, BH7–11), 1.72 (s, 5H, BH2−6). ¹³C{¹H} NMR ((CD₃)₂CO, δ ppm): 158.51 (s, 1C, C_{para}), 139.67 (q, 1C, ¹J(¹³C,¹¹B) \approx 72 Hz, C_{ipso}), 134.43 (s, 2C, Ph), 112.59 (s, 2C, Ph), 55.08 (s, 1C, OCH₃), 46.65 (s, 1C, C_{cluster}). ¹¹B NMR $((CD₃)₂CO, \delta ppm): 2.6 (s, 1B, B12), -12.5 (d, 5B, ¹J(¹¹B₁H) = 136$ Hz, B7-11), -16.6 (d, SB, ¹J(¹¹B,¹H) = 150 Hz, B2-6). MALDI-MS m/z (isotopic abundance > 60) calcd for 1j ([C₈H₁₈B₁₁O]⁻): 248 (75%), 249 (100%), 250 (80%). Found: 248 (84%), 249 (100%), 250 (95%). Anal. Calcd for $C_{16}H_{38}B_{11}NO$: C, 50.65; H, 10.10; N, 3.69. Found: C, 50.45; H, 10.34; N, 3.68.

 $[Et_4N][12-(4-HC\equiv C-C_6H_4)-closo-1-CB_{11}H_{11}]$ ($[Et_4N]1k$). Cs $[12-(4H_4H_4)$ I-closo-1-CB₁₁H₁₁] (1 g, 2.5 mmol), $[PdCl_2(PPh_3)_2]$ (50 mg, 0.075 mmol), and 4-Me₃SiC≡C−C₆H₄MgBr (5 mL, 5 mmol) were used. The trimethylsilyl group was removed under basic aqueous conditions during workup. Yield: 837 mg (2.24 mmol, 90%). NMR data for anion 1k. ¹H{¹¹B} NMR (CD₃CN, δ ppm): 7.40–7.35 (m, 2H, Ph), 7.15– 7.08 (m, 2H, Ph), 3.42 (s, 1H, C \equiv CH), 2.24 (sextet, 1H, ³J(¹H,¹H) \approx 3.5 Hz, CH_{cluster}), 1.78 (s, 5H, BH7−11), 1.74 (s, 5H, BH2−6).
¹³C{¹H} NMR (CD₃CN, δ ppm): 150.10 (q, 1C, ¹J(¹³C,¹¹B) = 73.4 Hz, Cipso), 133.56 (s, 2C, Ph), 130.42 (s, 2C, Ph), 118.92 (s, 1C, C_{para} , 85.48 (s, 1C, Ph−¹³C≡CH), 77.37 (d, 1C, Ph−C≡¹³CH),

47.52 (s, 1C, C_{cluster}). ¹¹B NMR (CD₃CN, δ ppm): 2.0 (s, 1B, B12), -12.5 (d, 5B, 1 J(11 B, 1 H) = 137 Hz, B7–11), -16.5 (d, 5B, 1 J(11 B, 1 H) = 150 Hz, B2–6). IR/Raman (cm⁻¹): 2105 cm⁻¹ (ν (C≡C)). MALDI-MS *m/z* (isotopic abundance > 60) calcd for 1k ($[C_9H_{16}B_{11}]^-$): 242 (75%), 243 (100%), 244 (80%). Found: 242 (62%), 243 (100%), 244 (70%). Anal. Calcd for C₉H₁₆B₁₁Cs: C, 28.75; H, 4.29. Found: C, 28.85; H, 4.05.

 $[Et_4N][12-Et-closo-1-CB_{11}H_{11}]$ ($[Et_4N]11$). The starting materials were $Cs[12-I-closo-1-CB_{11}H_{11}]$ (200 mg, 0.50 mmol), $[PdCl_2(PPh_3)_2]$ (30 mg, 0.045 mmol), and EtMgBr (1 mL, 1 mmol). Yield: 126 mg $(0.42 \text{ mmol}, 84\%).$ NMR data for anion 1l. ${}^{1}H\{{}^{11}B\}$ NMR $((CD₃)₂CO, \delta$ ppm): 2.07 (s, 1H, CH_{cluster}), 1.59 (s, 5H, BH7–11), 1.53 (s, 5H, BH2–6), 0.75 (t, 3H, 3 J(1 H, 1 H) = 7.8 Hz, 1 J(13 C, 1 H) = 124.0 Hz, CH₃), 0.49 (q, 2H, ³J(¹H,¹H) = 7.8 Hz, ¹J(¹³C,¹H) = 117.4 Hz, CH₂). ¹³C{¹H} NMR ((CD₃)₂CO, δ ppm): 45.28 (d, 1C, C_{cluster}), 14.66 (s, 1C, CH₃), 12.95 (q, 1C, ¹J(¹³C,¹¹B) = 62.0 Hz, BCH₂).¹¹B NMR ((CD₃)₂CO, δ ppm): 4.0 (s, 1B, B12), -12.71 (d, 5B, ¹J(¹¹B, ¹H) - 135 H₇ B2-6) -169 (d, 5B, ¹J(¹¹B¹H) - 149 H₇ B2-11) H) = 135 Hz, B2–6), −16.9 (d, 5B, $\frac{1}{1}$ ($\frac{11}{B}$ H) = 149 Hz, B7–11). MALDI-MS m/z (isotopic abundance > 60) calcd for 11 ([C₃H₁₆B₁₁]⁻): 170 (75%), 171 (100%), 172 (80%). Found: 170 (88%), 171 (100%), 172 (92%). Anal. Calcd for C₁₁H₃₆B₁₁N: C, 43.85; H, 12.04; N, 4.65. Found: C, 43.43; H, 12.30; N, 4.61.

[Et₄N][12-Me₃SiCH₂-closo-1-CB₁₁H₁₁] ([Et₄N]1m). Cs[12-I-closo-1-CB₁₁H₁₁] (200 mg, 0.50 mmol), $[PdCl_2(PPh_3)_2]$ (10 mg, 0.015 mmol), and $Me₃SiC \equiv CMgBr$ (1.3 mL, 1 mmol) were used. Yield: 144 mg (0.40 mmol, 80%). NMR data for anion 1m. ¹H{¹¹B} NMR $((CD₃)₂CO, \delta ppm): 2.02$ (s, 1H, CH_{cluster}), 1.58 (s, 10H, BH2−11), 0.02 (s, 2H, CH₂), –0.23 (s, 9H, CH₃). ¹³C{¹H} NMR ((CD₃)₂CO, δ ppm): 44.88 (s, 1C, C_{cluster}), 8.63 (q, 1C, ¹J(¹³C,¹¹B) = 58.3 Hz, CH₂), 1.05 (s, 3C, ¹J(²⁹Si,¹³C) = 49.0 Hz, CH₃). ¹¹B NMR $((CD₃)₂CO, \delta ppm): 2.3$ (s, 1B, B12), -12.0 (d, SB, $^{1}J(^{11}B, ^{1}H)$ = 134 Hz, B2–6), −16.82 (d, 5B, $\frac{1}{1}$ $\left(\frac{11}{1}B, \frac{1}{1}H\right)$ = 149 Hz, B7–11). MALDI-MS m/z (isotopic abundance > 60) calcd for 1m ([C5H22B11Si][−]): 228 (71%), 229 (100%), 230 (89%). Found: 228 (64%), 229 (100%), 230 (90%). Anal. Calcd for $C_{13}H_{42}B_{11}NSi$: C, 43.43; H, 11.78; N, 3.89. Found: C, 42.93; H, 12.26; N, 3.77.

 $[Et_4N][1-Me-12-HC \equiv C-closo-1-CB_{11}H_{10}]$ ($[Et_4N]$ 3a). Prepared from $Cs[1-Me-12-I-*close*-1-CB₁₁H₁₀]$ (400 g, 0.96 mmol) and $Me₃SiC \equiv CMgBr$ (4 mL, 3 mmol) with $[PdCl₂(PPh₃)₂]$ (35 mg, 0.050 mmol). The trimethylsilyl group was removed under basic aqueous conditions during workup. Yield: 240 mg (0.75 mmol, 80%). NMR data for anion 3a: ${}^{1}H{^{11}B}$ NMR ((CD₃)₂CO, δ ppm): 1.89 (s, 1H, C≡CH), 1.71 (s, 10H, BH2−11), 1.48 (s, 3H, CH₃). ¹³C{¹H} NMR $((CD_3)_2CO$, δ ppm): 96.63 (q, 1C, ¹J(¹³C,¹¹B) = 96.0 Hz, B12⁻¹³C≡C), 81.85 (q, 1C, ²J(¹³C,¹¹B) = 16.8 Hz, B12-C≡¹³C), 62.72 (s, 1C, C_{cluster}), 27.27 (s, 1C, CH₃). ¹¹B NMR ((CD₃)₂CO, δ ppm): -11.3 (s, 1B, B12), -11.9 (d, 5B, ¹J(¹¹B,¹H) = 147 Hz, B7−11), -13.1 (d, 5B, 1 J(11 B, 1 H) = 152 Hz, B2−6). IR/Raman (cm⁻¹): 2066 cm⁻¹ (ν (C≡C)). MALDI-MS m/z (isotopic abundance > 60) calcd for 3a ($[C_4H_{14}B_{11}]^-$): 180 (75%), 181 (100%), 182 (85%). Found: 180 (77%), 181 (100%), 182 (84%). Anal. Calcd for $C_{12}H_{34}B_{11}N: C$, 46.29; H, 11.01; N, 4.50. Found: C, 45.72; H, 11.22; N, 3.69.

 $[Et_4N][1-Ph-12-Me_3SiC \equiv C-closo-1-CB_{11}H_{10}]$ ($[Et_4N]4a$). $[Et_4N]$ 4a was synthesized from Cs[1-Ph-12-I-closo-1-CB₁₁H₁₁] (220 mg, 0.46 mmol) and $Me₃SiC \equiv CMgBr$ (1.84 mL, 1.38 mmol) with $[{}PdCl_2(PPh_3)_2]$ (16 mg, 0.023 mmol). Yield: 120 mg (0.27 mmol, 58%). Spectroscopic data and results of elemental analysis have been reported earlier.²²

 $[Et_4N][7-HC \equiv C-12-F-closo-1-CB_{11}H_{10}]$ ($[Et_4N]5a$). $[Et_4N]5a$ was prepared f[rom](#page-9-0) $Cs[12-I-closo-1-CB₁₁H₁₁]$ (420 mg, 0.68 mmol) and $\text{Me}_3\text{SiC}\equiv \text{CMgBr}$ (1.3 mL, 1 mmol) with $[\text{PdCl}_2(\text{PPh}_3)_2]$ (10 mg, 0.015 mmol). The trimethylsilyl group was removed under basic aqueous conditions during workup. Yield: 110 mg (0.35 mmol, 73%). NMR data for anion 5a. ${}^{1}\text{H}^{\{11}\text{B}}$ } NMR ((CD₃)₂CO, δ ppm): 2.04 (s, 1H, $CH_{cluster}$), 2.02 (s, 1H, B7–C \equiv CH), 1.78 (s, 2H, BH8 + 11), 1.67 $(s, 4H, BH2 + 3+9 + 10)$, 1.44 $(s, 3H, BH4-5)$. ¹³C{¹H} NMR $((CD_3)_2CO, \delta$ ppm): 93.12 (q, 1C, ¹J(¹³C,¹¹B) = 101.9 Hz, B7-¹³C \equiv CH), 82.19 (q, 1C, ² $J(^{13}C_1^{11}B) = 19.1$ Hz, B7–C \equiv ¹³CH), 36.28 (s, 1C, C_{cluster}). ¹¹B NMR ((CD₃)₂CO, δ ppm): 13.4 (s, 1B, B12), −13.8

 $(d, 2B, \, {}^{1}J({}^{11}B, {}^{1}H) = 131$ Hz, B8 + 11), ~-15 (s, 1B, B7), -15.2 (d, $2B$, $\frac{1}{1}$ $(1^{11}B)^{1}H$ = 162 Hz, B9 + 10), -18.4 (d, 2B, $\frac{1}{1}$ $(1^{11}B)^{1}H$ = 159 Hz, B2 + 3), -20.1 (d, 3B, $\frac{1}{1}$ $\left(\frac{11}{1}B_1^1H\right)$ = 157 Hz, B4-6). ¹⁹F NMR $((CD₃)₂CO, \delta ppm): -191.44 (q, ¹J(¹⁹F,¹¹B) = 59 Hz). IR/Raman (cm⁻¹):$ 2066 cm⁻¹ (ν (C≡C)). MALDI-MS *m/z* (isotopic abundance > 60) calcd for 7a $([C_3H_{11}B_{11}F]^-)$: 184 (74%), 185 (100%), 186 (80%). Found: 184 (68%), 185 (100%), 186 (72%). Anal. Calcd for $C_{11}H_{31}B_{11}NF: C$, 41.91; H, 9.91; N, 4.44. Found: C, 41.211; H, 9.88; N, 4.45.

 $[Et_4N][7-HC \equiv C-12-Cl-closo-1-CB_{11}H_{10}]$ ($[Et_4N]$ 6a). $Cs[12-I \text{clos}_0$ -1-CB₁₁H₁₁] (200 mg, 0.46 mmol), $[\text{PdCl}_2(\text{PPh}_3)_2]$ (10 mg, 0.015 mmol), and $Me₃SiC \equiv CMgBr$ (1.3 mL, 1 mmol) were used. The trimethylsilyl group was removed under basic aqueous conditions during workup. Yield: 270 mg (0.81 mmol, 70%). NMR data for anion 6a. ${}^{1}H{^{11}B}$ NMR ((CD₃)₂CO, δ ppm): 2.18 (sextet, 1H, ¹J(¹H,¹H) = 3.6 Hz, CH_{cluster}), 2.01 (s, 1H, B7-C≡CH), 1.87 (s, 2H, BH8 + 11), 1.80 (s, 4H, BH2 + 3+9 + 10), 1.57 (s, 3H, BH4 + 6), 1.53 (s, 1H, BH5). ¹³C{¹H} NMR ((CD₃)₂CO, δ ppm): 93.00 (q, 1C, ¹J(¹³C,¹¹B) = 105.1 Hz, B7-¹³C≡CH), 82.28 (q, 1C, ²J(¹³C,¹¹B) = 19.3 Hz, B7- $C\equiv$ ¹³CH), 42.55 (s, 1C, C_{cluster}). ¹¹B NMR ((CD₃)₂CO, δ ppm): 4.0 (s, 1B, B12), -11.7 (d, 2B, 1 J(11 B, 1 H) = 148 Hz, B8 + 11), -12.7 (d, 2B, B9 + 10), \sim -12.7 (s, 1B, B7), -16.7 (d, 2B, ¹J(¹¹B,¹H) = 160 Hz, B2 + 3), ~−17 (d, ¹J(¹¹B,¹H) = overlapped, 1B, B5), -18.1 (d, 2B, 1_{J(}¹/1_B,¹H) = 145 Hz, B4-6) IB/Baman (cm⁻¹), 2065 cm⁻¹ (μ (C=C)) $J(^{11}B, ^{1}H) = 145$ Hz, B4–6). IR/Raman (cm^{-1}) : 2065 cm⁻¹ (ν (C \equiv C)). MALDI-MS m/z (isotopic abundance > 60) calcd for 6a $([C_3H_{11}B_{11}C]\^-)$: 200 (75%), 201 (100%), 202 (80%). Found: 200 (76%), 201 (100%), 202 (86%). Anal. Calcd for $C_{11}H_{31}B_{11}CIN: C$, 39.83; H, 9.42; N, 4.22. Found: C, 40.44; H, 9.99; N, 3.69.

 $[Et_4N][7-(4-HC\equiv C-C_6H_4)-12-C1-closo-1-CB_{11}H_{10}]$ ([Et₄N]6b). $Cs[12-I-closo-1-CB₁₁H₁₁]$ (200 mg, 0.46 mmol), $[PdCl₂(PPh₃)₂]$ (10 mg, 0.015 mmol), and 4-Me₃SiC≡C−C₆H₄MgBr (0.7 mL, 0.7 mmol) were used as starting materials. The trimethylsilyl group was removed under basic aqueous conditions during workup. Yield: 130 mg (0.32 mmol, 70%). NMR data for anion 6b. ${}^{1}H{^{11}B}$ NMR $((CD₃), CO, \delta$ ppm): 7.65−7.55 (m, 2H, Ph), 7.30−7.20 (m, 2H, Ph), 3.46 (s, 1H, Ph−C≡CH), 2.31 (sextet, 1H, ³J(¹H,¹H) = 3.4 Hz, CH_{cluster}), 2.00 (s, 2B, BH9 + 10), 1.91 (s, 2B, BH8 + 11), 1.85 (s, 2B, BH2 + 3), 1.67 (s, 2B, BH4 + 6), 1.62 (s, 1B, BH5). ¹³C{¹H} NMR $((CD_3)_2CO, \delta$ ppm): 145.76 (q, 1C, ¹J(¹³C,¹¹B) = 73.0 Hz, C_{ipso}), 134.82 (s, 2C, Ph), 130.64 (s, 2C, Ph), 119.75 (s, 1C, C_{para}), 85.33 (s, 1C, Ph-¹³C≡CH), 77.76 (s, 1C, Ph-C≡¹³CH), 43.83 (s, 1C, C_{cluster}). ¹¹B NMR ((CD₃)₂CO, δ ppm): δ = 4.1 (s, 1B, B12), -4.4 (s, 1B, B7), -12.4 (d, 4B, ${}^{1}J({}^{11}B,{}^{1}H) = 138$ Hz, B8-11), -16.9 (d, 2B, $17(^{11}B,{}^{1}H) = 157$ B2 + 3) -18.2 (d, 2B, $17(^{11}B,{}^{1}H) = 133$ B4 + 6) $J(^{11}B, ^{1}H) = 157, B2 + 3), -18.2$ (d, 2B, $^{1}J(^{11}B, ^{1}H) = 133, B4 + 6),$ -19.0 (d, 1B, 1 J(11 B, 1 H) = 154 Hz, B5). IR/Raman (cm⁻¹): 2104 cm⁻¹ (ν (C \equiv C)). MALDI-MS m/z (isotopic abundance > 60) calcd for 6b $([C_9H_1, B_1, Cl]^-)$: 276 (75%), 277 (100%), 278 (80%). Found: 276 (74%), 277 (100%), 278 (93%), 279 (75%). Anal. Calcd for $C_{17}H_{35}N$ B₁₁Cl: C, 50.07; H, 8.65; N, 3.43. Found: C, 44.95; H, 8.65; N, 3.51.

 $[Et_4N][7-HC \equiv C-12-Br-*closo-1-CB*₁₁H₁₀]$ ($[Et_4N]7a$). $Cs[12-I \text{closo-1-CB}_{11}H_{11}$] (50 mg, 0.1 mmol), $[\text{PdCl}_2(\text{PPh}_3)_2]$ (3 mg, 0.004 mmol), and Me₃SiC=CMgBr (0.5 mL, 0.38 mmol) were used. The trimethylsilyl group was removed under basic aqueous conditions during workup. Yield: 25 mg (0.07 mmol, 66%). NMR data for anion 7a. ${}^{1}H{^{11}B}$ NMR ((CD₃)₂CO, δ ppm): 2.34 (sextet, 1H, ³J(¹H,¹H) = 3.4 Hz, CH_{cluster}), 2.02 (s, 1H, C \equiv CH), 1.94 (s, 2H, BH8 + 11), 1.89 (s, 2H, BH9 + 10), 1.85 (s, 2H, BH4 + 6), 1.68 (s, 1B, BH5), 1.62 (s, 2H, BH2 + 3). ¹³C{¹H} NMR ((CD₃)₂CO, δ ppm): 93.45 (q, 1C, 1⁷/¹³C⁻¹¹R) – 105.4 H₇ B7–¹³C=CH) 82.13 (q, 1C, 2*I*⁽¹³C⁻¹¹R)</sub> – $J($ ¹³C,¹¹B) = 105.4 Hz, B7-¹³C≡CH), 82.13 (q, 1C, 2J(¹³C,¹¹B) = 19.3 Hz, B7−C≡¹³CH), 44.59 (d, 1C, C_{cluster}). ¹¹B NMR ((CD₃)₂CO, δ ppm): -2.5 (s, 1B, B12), -11.3 (d, 2B, 1 J(11 B, 1 H) = 141 Hz, B8 + 11), -12.7 (d, 3B, $\frac{1}{1}$ $\binom{11}{1}$ B, $\frac{1}{1}$ \approx 142 Hz, B9 + 10), ~-12.7 (s, 1B, B7), -16.3 (d, 2B, ¹J(¹¹B,¹H) = 156 Hz, B2 + 3), ~-17.0 (d, 1B, ¹J(¹¹B,¹H) ≈ 145 Hz, B5), -17.7 (d, 2B, 1 J(11 B, 1 H) = 150 Hz, B4 + 6). IR/Raman (cm⁻¹): 2065 cm⁻¹ (ν (C≡C)). MALDI-MS m/z (isotopic abundance > 60) calcd for 7a ($[C_3H_{11}B_{11}Br]$: 244 (74%), 245 (100%), 246 (80%), 247 (97%), 248 (78%). Found: 243 (66%), 244 (88%), 245 (100%), 246 (92%), 247 (78%), 248 (62%). Anal. Calcd for $C_{11}H_{31}B_{11}BrN: C$, 35.12; H, 8.31; N, 3.72. Found: C, 33.09; H, 8.31; N, 3.74.

[Et₄N][7,12-(HC= C)₂-closo-1-CB₁₁H₁₀] ([Et₄N]8a). For preparation of the dialkynyl-functionalized anion a slightly modified synthesis was applied. $Me₃SiC \equiv CMgBr$ (2.5 mL, 1.9 mmol) and $[PdCl₂(PPh₃)₂]$ (16 mg, 0.023 mmol) were added in two equal portions to Cs8 (200 mg, 0.38 mmol). The first one was added at the beginning of the reaction and the second after 5 h. The reaction was complete after microwave irradiation for further 4 h. The trimethylsilyl groups were removed under basic aqueous conditions during workup. Yield: 77 mg (0.24 mmol, 63%). Spectroscopic data and results of elemental analysis have been reported earlier.³

Preparation of $[Et_4N][12-(CH_2=CHCH_2)-closo-1-CB_{11}H_{11}]/$ $[Et_4N][12-(trans-CH_3CH=CH)-closo-1-CB_{11}H_{11}]$ ($[Et_4N]1n/[Et_4N]$ 1o): Method A (Table 2, entry 12). Cs1 (200 mg, 0.50 mmol), $[PdCl₂(PPh₃)₂]$ (28 mg, 0.040 mmol), and H₂C=CHCH₂MgBr (3.5) mL, 3.5 mmol) were used in a slightly modified general procedure. Catalyst and Grignard r[ea](#page-2-0)gent were added in two portions: the first one of $[\text{PdCl}_2(\text{PPh}_3)_2]$ (10 mg, 0.015 mmol) and $H_2C=$ CHCH2MgBr (1.0 mL, 1.0 mmol) at the start of the synthesis and the second of $[PdCl_2(PPh_3)_2]$ (15 mg, 0.020 mmol) and $H_2C=$ CHCH2MgBr (2.5 mL, 2.5 mmol) after 24 h. The reaction was complete after further 6 h. According to $^{11}B{^1H}$ NMR spectra the mixture contains the allyl derivative $[12$ -(CH₂=CHCH₂)-closo-1- $CB_{11}H_{11}$ ⁻ (1n) and approximately 12% of 2. The black reaction mixture was poured into 50 mL of distilled water. The mixture was stirred at 40 °C for 1 h, and then THF was removed at a rotary evaporator. The clear aqueous phase was separated by filtration from the black residue. For a further extraction, the black residue was dissolved in 20 mL of dichloromethane and 30 mL of distilled water were added. Dichloromethane was removed in a rotary evaporator, and the aqueous phase was filtered. Product was precipitated as $[Et_4N]^+$ salt from the combined aqueous solutions by addition of $[Et_4N]Br$ (500 mg, 2.4 mmol) dissolved in water (10 mL). Yield 120 mg (77%) of $[Et_4N][12-(trans-CH_3CH=CH)-closo-1-CB_{11}H_{11}]$ $([Et_4N]1o,$ 94%) and $[Et_4N][12-(CH_2=CHCH_2)-closo-1-CB_{11}H_{11}]$ ($[Et_4N]1n$, 6%). Spectroscopic data of the anion 1n. ${}^{1}H{^{11}B}$ NMR ((CD₃)₂CO, δ ppm): 5.77 (ddt, 1H, ${}^{3}J({}^{1}H,{}^{1}H)_{\text{trans}} = 17.0$ Hz, ${}^{3}J({}^{1}H,{}^{1}H)_{\text{cis}} = 9.9$ Hz,
 ${}^{3}J({}^{1}H,{}^{1}H)$ = 77 Hz, B12–CH –C¹H–CH) 4.50 (dm, 1H) $J^3/(^1H, ^1H) = 7.7$ Hz, B12−CH₂−C¹H=CH₂), 4.50 (dm, 1H,
 $J^3I(^1H, ^1H) = 17.0$ Hz, B12−CH −CH−C(H¹H))) 4.44 (dm, 1H $J(^{1}H, ^{1}H)_{trans} = 17.0$ Hz, B12–CH₂–CH=C(H¹H_{trans})), 4.44 (dm, 1H, 3⁷(¹H_{trans})), 3.44 (dm, 1H, $J(^{1}H, ^{1}H)_{\text{cis}} = 9.9$ Hz, B12–CH₂–CH=C(H¹H_{cis})), 2.08 (sextet, 1H,
 $J^{3}U^{1}H^{1}H) = 31 H_{7}$ CH, ...) 1.61 (c, 5H, BH) 1.56 (c, 5H, BH) 1.44 $J(^{1}H,^{1}H) = 3.1$ Hz, CH_{cluster}), 1.61 (s, 5H, BH), 1.56 (s, 5H, BH), 1.44 (m, 2H, B12–CH₂). ¹³C{¹H} NMR ((CD₃)₂CO, δ ppm): 145.16 (s, 1C, B12−CH₂−¹³CH=CH₂), 108.36 (s, 1C, B12−CH₂−CH=¹³CH₂), 45.88 (s, 1C, C_{cluster}), 26.16 (q, 1C, ¹J(¹³C,¹¹B) = 59.2 Hz, B12–CH₂– CH=CH₂). ¹¹B NMR ((CD₃)₂CO, δ ppm): 2.3 (s, 1B, B12), −12.5 (d, $5B, \frac{1}{1}$ ($\frac{11}{B}, \frac{1}{H}$) = 135 Hz, B7-11), -16.6 (d, 5B, $\frac{1}{1}$ ($\frac{11}{B}, \frac{1}{H}$) = 150 Hz, B2−6). IR/Raman (cm⁻¹): 1628 cm⁻¹ (ν(C=C)). Spectroscopic data of the anion 1o. ¹H_{¹¹B} NMR ((CD₃)₂CO, δ ppm): 5.48 (d, 1H, 3_I/¹H¹H) – 3³₁/¹H¹H) – $J(^{1}H,^{1}H) = 16.9$ Hz, B12–C¹H=CH–CH₃), 5.40 (dq, 1H, ³ $J(^{1}H,^{1}H) =$ 16.9 Hz, ³ J(1 H,1 H) = 5.6 Hz, B12−CHC1 ^H−CH3), 1.51 (d, 3H, ³ $J(^{1}H,^{1}H) = 5.6$ Hz, CH₃), 1.60 (s, 10H, BH2–11), 2.09 (s, 1H, CH_{cluster}). ¹³C{¹H} NMR ((CD₃)₂CO, δ ppm): 138.96 (q, 1C, J [¹³C,¹¹B) = 75.5 Hz, B12−¹³CH=CH−CH₃), 129.37 (s, 1C, B12− CH= 13 CH−CH₃), 46.22 (s, 1C, C_{cluster}), 21.45 (s, 1C, CH₃). ¹¹B NMR $((CD₃)₂CO, \delta ppm): 0.9$ (s, 1B, B12), -12.7 (d, SB, ¹J(¹¹B,¹H) = 134 Hz, B7–11), -16.8 (d, 5B, ¹J(¹¹B,¹H) = 149 Hz, B2–6). IR/Raman (cm⁻¹): 1634 cm⁻¹ (ν (C=C)). Identical data for [Et₄N]1o and [Et₄N] 1n. MALDI-MS m/z (isotopic abundance > 60) calcd for 1o and 1n $([C_4H_{16}B_{11}]^-)$: 182 (75%), 183 (100%), 184 (80%). Found: 182 (80%), 183 (100%), 184 (84%). Anal. Calcd for C₁₂H₃₆B₁₁N: C, 45.99; H, 11.58; N, 4.47. Found: C, 45.16; H, 11.51; N, 4.23.

Preparation of $[Et_4N][12-(CH_2=CHCH_2)-closo-1-CB_{11}H_{11}]/$ $[Et_4N][12-(trans-CH_3CH=CH)-closo-1-CB_{11}H_{11}]$ ($[Et_4N]1n/[Et_4N]$ 1o): Method B (Table 2, entry 13). Synthesis was performed similar to method A described for $[Et_4N]$ 1n and $[Et_4N]$ 10 starting with Cs1 (200 mg, 0.50 mmol). However, the amount of $[\text{PdCl}_2(\text{PPh}_3)_2]$ (42 mg, 0.060 mmol) [and](#page-2-0) $H_2C=CHCH_2MgBr$ (3.0 mL, 3.0 mmol) was slightly different and CuI (10 mg, 0.050 mmol) was added. The reagents were added in three equal portions: the first at the beginning of the reaction, the second after 50 min, and the third after further 50 min of microwave irradiation. Workup was performed analogously

to the procedure described for method A, except for stirring in THF at 40 °C for 1 h that was omitted, and thus, only a minor amount of the allyl derivative 1n was isomerized to the vinyl species 1o. Yield 123 mg (79%) of $[Et_4N][12-(CH_2=CHCH_2)-closo-1-CB_{11}H_{11}]$ ($[Et_4N]\mathbf{1n}$, 84%) and $[Et_4N][12-(trans-CH_3CH=CH)-clos-1-CB_{11}H_{11}]$ ($[Et_4N]$ 1o, 16%).

12-Ph₃P-closo-1-CB₁₁H₁₁ (2). Under an Ar atmosphere Cs[12-Icloso-CB₁₁H₁₁] (Cs1) (100 mg, 0.25 mmol), $[Pd(PPh₃)₄]$ (16.8 mg, 0.0145 mmol), PPh_3 (130 mg, 0.5 mmol), and K_2CO_3 (35 mg, 0.25 mmol) were dissolved in dry THF (10 mL) in a glass finger (70 mL) equipped with a valve with a PTFE stem (Young, London) and fitted with a magnetic stirring bar. While stirring, the reaction mixture was heated to 66 °C for 4 h by microwave irradiation. The black reaction mixture was filtered, and all volatiles were removed under reduced pressure. The solid residue was dissolved in a small amount of chloroform, and pure 2 was precipitated by addition of hexane. Yield: 89 mg (0.22 mmol, 88%). $^1\mathrm{H}{^1\mathrm{B}}$ NMR (toluene- d_8 , δ ppm): 7.53−7.44 (m, 6H, Ph), 7.03−6.98 (m, 3H, Ph), 6.94−6.88 (m, 6H, Ph), 2.67 (s, 1H, CH_{cluster}), 2.55 (s, 5H, BH7−11), 2.37 (d, 5H, $J(^{31}P,{}^{1}H) = 5.3$ Hz, BH2–6). ¹³C{¹H} NMR (toluene- d_8 , δ ppm): 134.70 (d, 6C, ${}^{2}J({}^{31}P,{}^{13}C) = 9.0$ Hz, C_{ortho}), 132.52 (d, 3C, ${}^{4}J({}^{31}P,{}^{13}C) =$ 2.8 Hz, C_{para}), 128.84 (d, 6C, ³J(³¹P,¹³C) = 11.4 Hz, C_{meta}), 123.47 (d, 3C, ${}^{1}J(^{31}P, {}^{13}C)$ = 70.7 Hz, C_{ipso}), 58.78 (s, 1C, C_{cluster}). ¹¹B NMR (toluene-d₈, δ ppm): −9.6 (d, 1B, ¹J(³¹P,¹¹B) = 147 Hz, B12), −12.2 (d, $5B, \frac{1}{1}(\frac{11}{B}, \frac{1}{H}) = 144$ Hz, B7-11), -14.1 (d, $5B, \frac{1}{1}(\frac{11}{B}, \frac{1}{H}) = 160$, B2−6). ³¹P{¹¹B} NMR (toluene- d_8 , δ ppm): 2.3 (q, ¹J(³¹P_i¹¹B) = 146.8 Hz). Anal. Calcd for $C_{19}H_{26}B_{11}P$: C, 56.44; H, 6.48. Found: C, 56.63; H, 6.42.

■ ASSOCIATED CONTENT

6 Supporting Information

This material is available free of charge via the Internet at http://pubs.acs.org.

■ [AUTHOR INF](http://pubs.acs.org)ORMATION

Corresponding Author

*E-mail: maik.finze@uni-wuerzburg.de.

Notes

The auth[ors declare no competing fina](mailto:maik.finze@uni-wuerzburg.de)ncial interest.

■ ACKNOWLEDGMENTS

This work was supported by the Fonds der Chemischen Industrie (FCI). The authors thank Professor W. Frank for generous support and Mrs. E. Hammes, Mr. P. Roloff, as well as Dr. P. Tommes (all Universität Düsseldorf) and Michael Hailmann (Universität Würzburg) for technical support and helpful discussions. Computational support and infrastructure was provided by the "Zentrum für Informations- und Medientechnologie" (ZIM) at the Heinrich-Heine-Universitat ̈Düsseldorf.

■ REFERENCES

(1) Körbe, S.; Schreiber, P. J.; Michl, J. Chem. Rev. 2006, 106, 5208− 5249.

(2) Ivanov, S. V.; Rockwell, J. J.; Polyakov, O. G.; Gaudinski, C. M.; Anderson, O. P.; Solntsev, K. A.; Strauss, S. H. J. Am. Chem. Soc. 1998, 120, 4224−4225.

(3) Reed, C. A. Acc. Chem. Res. 2010, 43, 121−128.

(4) Douvris, C.; Stoyanov, E. S.; Tham, F. S.; Reed, C. A. Chem. Commun. 2007, 1145−1147.

(5) Kü ppers, T.; Bernhardt, E.; Willner, H. Angew. Chem. 2007, 119, 6462−6465; Angew. Chem., Int. Ed. Engl. 2007, 46, 6346−6349.

(6) Fete, M. G.; Havlas, Z.; Michl, J. J. Am. Chem. Soc. 2011, 133, 4123−4131.

(7) Volkis, V.; Mei, H.; Shoemaker, R. K.; Michl, J. J. Am. Chem. Soc. 2011, 131, 3132−3133.

- (8) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188−1190.
- (9) Vyakaranam, K.; Barbour, J. B.; Michl, J. J. Am. Chem. Soc. 2006, 128, 5610−5611.
- (10) Vyakaranam, K.; Körbe, S.; Michl, J. J. Am. Chem. Soc. 2006, 128, 5680−5686.
- (11) Larsen, A. S.; Holbrey, J. D.; Tham, F. S.; Reed, C. A. J. Am. Chem. Soc. 2000, 122, 7264−7272.
- (12) Zhu, Y. H.; Ching, C. B.; Carpenter, K.; Xu, R.; Selvaratnam, S.; Hosmane, N. S.; Maguire, J. A. Appl. Organomet. Chem. 2003, 17, 346−350.
- (13) Cunha-Silva, L.; Ahmad, R.; Carr, M. J.; Franken, A.; Kennedy, J. D.; Hardie, M. J. Cryst. Growth Des. 2007, 7, 658−667.
- (14) Himmelspach, A.; Finze, M.; Raub, S. Angew. Chem. 2011, 123, 2676−2679; Angew. Chem., Int. Ed. Engl. 2011, 50, 2628−2631.
- (15) Jelínek, T.; Plešek, J.; Heřmánek, S.; Stíbr, B. Collect. Czech. Chem. Commun. 1986, 51, 819−829.
- (16) Sprenger, J. A. P.; Finze, M.; Schaack, B. B. Dalton Trans. 2010, 39, 2708−2716.
- (17) Morris, J. H.; Henderson, K. W.; Ol'shevskaya, V. A. J. Chem. Soc., Dalton Trans. 1998, 1951−1959.
- (18) Grü ner, B.; Janousek, Z.; King, B. T.; Woodford, J. N.; Wang, ̌
- C. H.; Všetečka, V.; Michl, J. J. Am. Chem. Soc. 1999, 121, 3122-3126. (19) Franken, A.; Kilner, C. A.; Thornton-Pett, M.; Kennedy, J. D.
- J. Organomet. Chem. 2002, 657, 176−179. (20) Bullen, N. J.; Franken, A.; Kilner, C. A.; Kennedy, J. D. Chem.
- Commun. 2003, 1684−1685.
- (21) Franken, A.; Kilner, C. A.; Thornton-Pett, M.; Kennedy, J. D.
- Collect. Czech. Chem. Commun. 2002, 67, 869−912. (22) Finze, M. Inorg. Chem. 2008, 47, 11857−11867.
- (23) Finze, M. Eur. J. Inorg. Chem. 2009, 501−507.
-
- (24) Mehta, V. P.; van der Eycken, E. V. Chem. Soc. Rev. 2011, 40, 4925−2936.
- (25) Caddick, S.; Fitzmaurice, R. Tetrahedron 2009, 65, 3325−3355.
- (26) Nilsson, P.; Olofsson, K.; Larhed, M. Top. Curr. Chem. 2006, 266, 103−144.
- (27) Kappe, C. O. Angew. Chem. 2004, 116, 6408−6443; Angew. Chem., Int. Ed. Engl. 2004, 43, 6250−6284.
- (28) Walla, P.; Kappe, C. O. Chem. Commun. 2004, 564−565.
- (29) Valášek, M.; Štursa, J.; Pohl, R.; Michl, J. Inorg. Chem. 2010, 49, 10255−10263.
- (30) Valášek, M.; Štursa, J.; Pohl, R.; Michl, J. Inorg. Chem. 2010, 49, 10247−10254.
- (31) Green, A. E. C.; Causey, P. W.; Louie, A. S.; Armstrong, A. F.; Harrington, L. E.; Valliant, J. F. Inorg. Chem. 2006, 45, 5727−5729.
- (32) Peymann, T.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1998, 37, 1544−1548.
- (33) Himmelspach, A.; Finze, M. J. Organomet. Chem. 2010, 695, 1337−1345.
- (34) Finze, M.; Reiss, G. J. Acta Crystallogr. 2009, E65, o1048.
- (35) Mömming, C. M.; Kehr, G.; Wibbeling, B.; Frö hlich, R.; Schirmer, B.; Grimme, S.; Erker, G. Angew. Chem. 2010, 122, 2564−
- 2467; Angew. Chem., Int. Ed. Engl. 2010, 49, 2414−2417.
- (36) Bernard, R.; Cornu, D.; Luneau, D.; Naoufal, D.; Scharff, J.-P.; Miele, P. J. Organomet. Chem. 2005, 690, 2745−2749.
- (37) Finster, D. C.; Hutton, W. C.; Grimes, R. N. J. Am. Chem. Soc. 1980, 102, 400−401.
- (38) Colquhoun, I. J.; McFarlane, W. J. Chem. Soc., Dalton Trans. 1981, 2014−2016.
- (39) Venable, T. L.; Hutton, W. C.; Grimes, R. N. J. Am. Chem. Soc. 1982, 104, 4716−4717.
- (40) Venable, T. L.; Hutton, W. C.; Grimes, R. N. J. Am. Chem. Soc. 1984, 106, 29−37.
- (41) Jelínek, T.; Kilner, C. A.; Thornton-Pett, M.; Kennedy, J. D. Chem. Commun. 2001, 1790−1791.
- (42) Jelínek, T.; Thornton-Pett, M.; Kennedy, J. D. Collect. Czech. Chem. Commun. 2002, 67, 1035−1050.
- (43) Franken, A.; Kilner, C. A.; Thornton-Pett, M.; Kennedy, J. D. J. Organomet. Chem. 2002, 657, 180−186.
- (44) Franken, A.; Jelínek, T.; Taylor, R. G.; Ormsby, D. L.; Kilner,
- C. A.; Clegg, W.; Kennedy, J. D. Dalton Trans. 2006, 5753−5769.
- (45) Dunks, G. B.; Barker, K.; Hedaya, E.; Hefner, C.;
- Palmerordonez, K.; Remec, P. Inorg. Chem. 1981, 20, 1692−1697.
- (46) Franken, A.; King, B. T.; Rudolph, J.; Rao, P.; Noll, B. C.; Michl, J. Collect. Czech. Chem. Commun. 2001, 66, 1238−1249.
- (47) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution; Universität Göttingen: Göttingen, Germany, 1997.
- (48) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112−122.
- (49) Sheldrick, G. M. SHELXL-97, Program for Crystal Structure
- Refinement; Universität Göttingen: Göttingen, Germany, 1997.
- (50) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837−838.
- (51) Brandenburg, K. Diamond 3.2g; Crystal Impact GbR: Bonn, Germany, 1999−2011.
- (52) Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133−1138.
- (53) Becke, A. D. Phys. Rev. A 1988, 38, 3098−3100.
- (54) Becke, A. D. J. Chem. Phys. 1993, 98, 5648−5652.
- (55) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785−789.
- (56) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Kudin, T. V. K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01; Gaussian, Inc.: USA, 2004.
- (57) Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F. III; Nandi, S.; Ellison, G. B. Chem. Rev. 2002, 102, 231−282.
- (58) Hättig, C.; Weigend, F. J. Chem. Phys. 2000, 113, 5154-5161.

(59) The corresponding literature for the basis sets can be found at ftp://ftp.chemie.uni-karlsruhe.de/pub/basen. The corresponding literature for the basis sets can be found at ftp://ftp.chemie.uni-karlsruhe. [de/pub/basen.](ftp://ftp.chemie.uni-karlsruhe.de/pub/basen)